
Initial Results of a Phase 1 First-in-Human Study of Cemsidomide (CFT7455), a Novel MonoDAC® Degrader, in Patients with Non-Hodgkin's Lymphoma

Steven M. Howitz, MD¹, Salvia Jain, MD², Jacob Soumerai, MD², Michael T Tees, MD³, Robert Stuver, MD¹, Amro Ali, PharmD⁴, Leah Leahy, BS⁴, Riadh Lobbardi, PhD⁴, Rong Chu, PhD⁴, Eunju Hurh, PhD⁴, Anthony S. Fiorino, MD, PhD⁴, and Neha Mehta-Shah, MD⁵

¹Memorial Sloan Kettering Cancer Center, New York, NY; ²Massachusetts General Hospital Cancer Center, Boston, MA; ³Colorado Blood Cancer Institute, Sarah Cannon Research Institute, Denver, CO; ⁴C4 Therapeutics, Inc., Watertown, MA; ⁵Washington University School of Medicine, St. Louis, MO

Cemsidomide (CFT7455) Background

- Cemsidomide is a novel, potent, cereblon-based IKZF1/3 MonoDAC® degrader with:
 - Catalytic activity enabling rapid and deep target degradation
 - High binding affinity to overcome resistance due to low cereblon levels
 - Pharmacologic profile to promote tumor residence time and sustained IKZF1/3 degradation

 Cemsidomide binds to cereblon to facilitate the recruitment and ubiquitination of IKZF1 and IKZF3, leading to the proteasomal degradation of both proteins

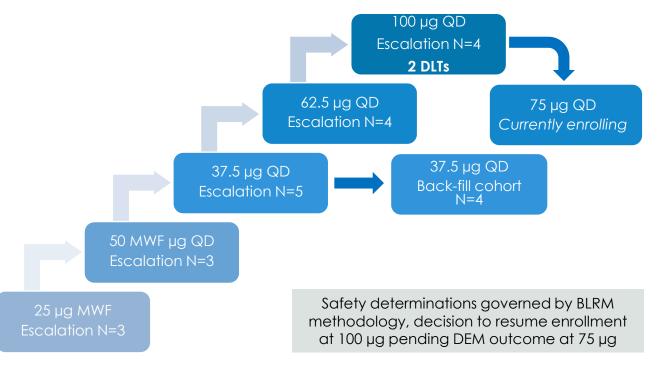
IKZF1/3 Degradation Induces:

- NHL and multiple myeloma cell death
- Stimulation of the immune system
 - Activates fully differentiated T-cells, preventing T-cell exhaustion
 - Promotes secretion of key immune stimulating cytokines (e.g., IL-2)
- On-target neutropenia
 - Disrupts hematopoietic stem cell differentiation

IKZF 1/3, Ikaros zinc finger protein 1/3; NHL, non-Hodgkin lymphoma; 14/14, 14 days on/14 days off

CFT7455-1101 Phase 1/2 Trial Study Design: Arm C, Cemsidomide in NHL

- Open-label, multicenter, phase 1/2 clinical trial with dose escalation and expansion phases (NCT04756726)*
- Dose escalation phase, beginning with a starting oral dose of 25 µg MWF 14 days on/14 days off, followed by a Bayesian logistic regression model until determination of the MTD and/or RP2D
 - Escalation cohorts enrolled 3-6 patients; once a dose was declared safe by SRC, additional patients were eligible to enroll at that dose
 - G-CSF and transfusions were not allowed in cycle 1 for dose escalation patients
 - Once a dose was declared safe, additional patients at each dose level were allowed G-CSF use at any timepoint


KEY INCLUSION CRITERIA

- Adults with NHL, R/R to prior therapy
 - For PTCL patients must have received at least 1 prior alkylator-based chemotherapy. For ALCL patients must have also received a CD-30 mAb
- Nonresponsive to or progressed within 60 days of prior therapy
- Creatinine clearance ≥40 mL/min
- ECOG ≤2

Phase 1 Study Endpoints

- Primary: assess safety, tolerability and define the RP2D/MTD
- Secondary: assess PK, PD, and preliminary anti-tumor activity per Lugano

Phase 1 Dose Escalation 14/14 Dosing Schedule*

Phase 2: Cohort Expansion

*CFT7455 administered as 14 days on/14 days off in a 28-day cycle; 3 patients at 75µg are excluded as dose escalation meeting has not occurred as of cut-off date 2 DLTs occurred at 100 µg due to grade 4 thrombocytopenia, both patients dose reduced to 62.5 µg.

ALCL, anaplastic large cell lymphoma; BLRM, Bayesian logistic regression model; ECOG, Eastern Cooperative Oncology Group; G-CSF, granulocyte colony stimulating factor; mAb, monoclonal antibody; MTD, maximum tolerated dose; MWF, Monday Wednesday Friday; NHL, non-Hodgkin lymphoma; PD, pharmacodynamics; PK, pharmacokinetics; PTCL, peripheral T-cell lymphoma; SRC, safety review committee; RD2D, recommended phase 2 dose; R/R, relapsed/refractory; 14/14, 14 days on/14 days off.

Baseline Characteristics and Disease History

Heavily Pretreated NHL Patient Population

Characteristics	Safety Population (N=23)
Age, median (range)	68 (28-85 years)
Male, n (%)	14 (61)
Years since initial diagnosis, median (range)	2 (0.4-21)
ECOG performance status, n (%) 0 1 2 Missing	11 (48) 9 (39) 2 (9) 1 (4)
Black or African American, n (%) White, n (%) Other, n (%)	6 (26) 13 (57) 4 (17)
IPI at screening, n (%) 1 2 3 4 Missing	2 (9) 6 (26) 7 (30) 3 (13) 5 (22)

Characteristics	Safety Population (N=23)
Median of prior therapies (range) 1 2 3 ≥4	3 (1-14) 2 (9) 7 (30) 3 (13) 11 (48)
PTCL, n (%) PTCL-NOS AITL ALCL ATLL	17 (74) 5 (22) 4 (17) 3 (13) 5 (22)
B-cell Lymphoma, n (%) DLBCL MCL MZL/MALT	6 (26) 4 (17) 1 (4) 1 (4)
Prior CAR-T Therapy, n (%)	4 (17)
Prior HCT, n (%) Autologous Allogenic	4 (17) 3 (13) 1(4)

AITL, angioimmunoblastic T-cell lymphoma; ALCL, anaplastic large cell lymphoma; ATLL, adult T-cell lymphoma; DLBCL, diffuse large B-cell lymphoma; ECOG, Eastern Cooperative Oncology Group; HCT, hematopoietic cell transplantation; IPI, international prognostic index; MCL, mantle cell lymphoma, MZL/MALT, marginal zone lymphoma/mucosa-associated lymphoid tissue lymphoma; NHL, non-Hodgkin lymphoma; PTCL, peripheral T-cell lymphoma; PTCL, peripheral T-cell lymphoma not-otherwise specified.

Treatment Disposition

The Majority of Discontinuations Were Due to Progressive Disease

Patient Disposition, n (%)	Safety Population (N=23)
Ongoing	3 (13)
Discontinued Progressive disease Physician decision Adverse event Death	20 (87) 14 (61) 3 (13) 2 (9) 1 (4)*

- Treatment was ongoing for 3 patients (13%)
- The primary reason for discontinuation was progressive disease (14/20)

5

^{*}The 1 death reported was considered unrelated to cemsidomide

Overview of AEs Across Dose Levels

Cemsidomide Monotherapy Was Well Tolerated With 2 DLTs Observed at 100 µg

Adverse Events, n (%)	25 μg MWF (N=3)	50 μg MWF (N=3)	37.5 μg QD (N=9)	62.5 μg QD (N=4)	100 μg QD (N=4)	Total (N=23)
TEAEs	3 (100)	2 (67)	9 (100)	4 (100)	4 (100)	22 (96)
TEAEs possibly related to cemsidomide	1 (33)	2 (67)	7 (78)	4 (100)	4 (100)	18 (78)
TESAEs	0	0	4 (44)	1 (25)	3 (75)	8 (35)
TESAEs possibly related to cemsidomide	0	0	4 (44)	1 (25)	3 (75)	8 (35)
Any grade ≥3 TEAEs	0	0	8 (89)	4 (100)	4 (100)	16 (70)
Any grade ≥3 TEAEs possibly related to cemsidomide	0	0	7 (78)	4 (100)	4 (100)	15 (65)
TEAEs leading to discontinuation	0	0	1 (11)	1 (25)	0	2 (9)
Dose limiting toxicities	0	0	0	0	2 (50)	2 (9)

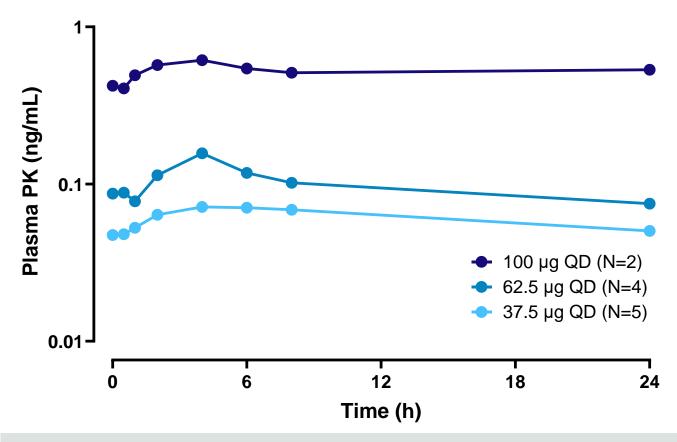
- Discontinuation rates due to AEs were low
- 2 patients had a DLT at 100 µg QD due to grade 4 thrombocytopenia with one also having grade 3 febrile neutropenia
- 3 patients dose reduced in the 100 μg cohort to 62.5 μg: 2 DLT patients and 1 patient due to nausea and vomiting

AEs, adverse events; DLT, dose limiting toxicities; TEAEs, treatment emergent adverse events; TESAEs, treatment emergent serious adverse events.

Most Common TEAEs and AEs of Interest

Majority of Grade 3/4 TEAEs Were Hematologic With Limited Non-Hematologic TEAEs

Common (>20% all grades) TEAEs and Events of Interest*, n (%)	All grade (N=23)	Grade 3 (N=23)	Grade 4 (N=23)
Infections Upper respiratory tract infection Sepsis Bacteremia Pneumonia	15 (65) 4 (17) 1(4) 1(4) 2 (9)	4 (17) 0 0 0 0 2 (9)	2 (9) 0 1 (4) 1 (4) 0
Neutropenia	11 (48)	4 (17)	7 (30)
Fatigue	11 (48)	1 (4)	0
Cough	7 (30)	0	0
Anemia	6 (26)	4 (17)	0
Peripheral edema	5 (22)	0	0
Febrile neutropenia*	4 (17)	4 (17)	0
Thrombocytopenia*	4 (17)	1 (4)	2 (9)
Maculopapular rash*	3 (13)	2 (9)	0

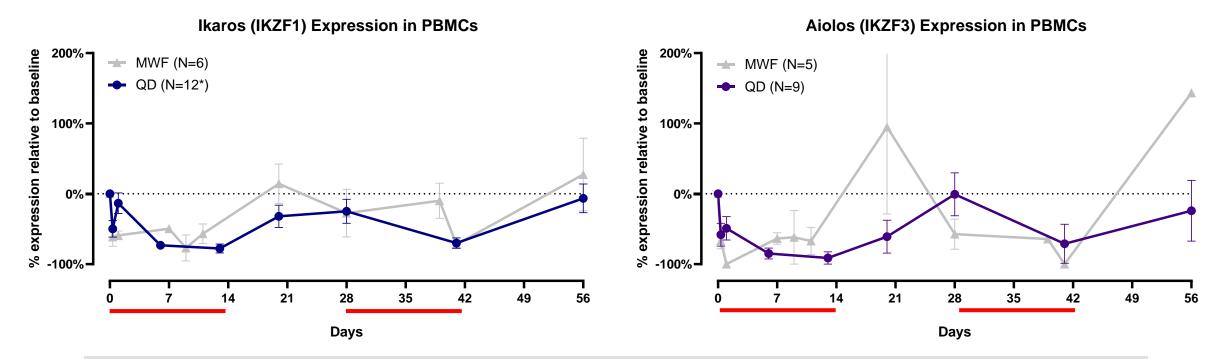

- 1 patient experienced a grade 5 AE (hip fracture resulting in transfer to hospice)
- G-CSF support was not allowed during cycle 1 for patients in dose escalation cohorts
- 11/23 (48%) of patients experienced grade 3/4 neutropenia, an anticipated on-target effect of IKZF1/3 degradation
 - Cases of neutropenia were manageable with treatment interruptions and G-CSF support after cycle 1
 - 9/23 (39%) of patients received G-CSF, with 3 of 9 patients receiving it in cycle 1

^{*}AEs of interest due to class effect of IKZF 1/3 degraders G-CSF, granulocyte colony-stimulating factor. Data cutoff: 10/11/24

Cemsidomide Pharmacokinetics

PK Was Dose-Proportional With an ~2-day Half-life

Cemsidomide PK at Steady-state*

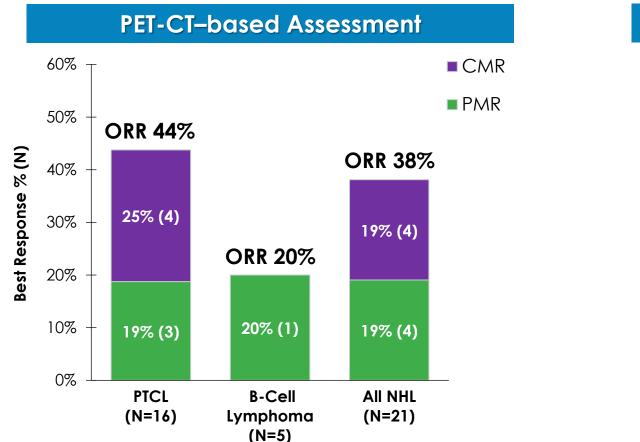


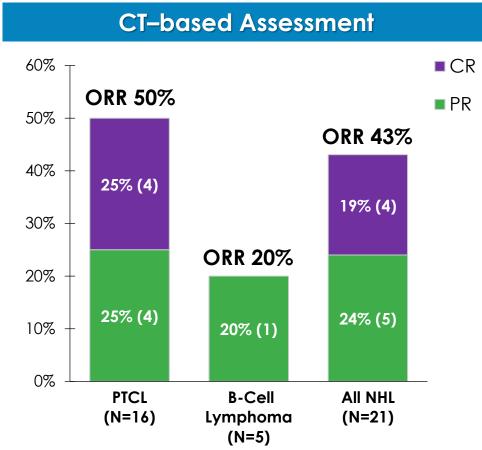
- Plasma exposure of cemsidomide monotherapy was dose-proportional
- The overall geometric mean half-life estimate is approximately 2 days

^{*}Patients dosed MWF not included PK, pharmacokinetics

Pharmacodynamics: IKZF1/3 Degradation

Rapid Degradation of IKZF1/3 Observed With Sufficient Neutrophil Recovery Time


- Cemsidomide induced at least 60% and 80% degradation of IKZF1 and IKZF3, respectively, when dosed daily and at least 40% and 60% degradation of IKZF1 and IKZF3, respectively, when dosed MWF
- IKZF1/3 rebound during off-treatment period enabled sufficient neutrophil recovery


*Data for a fourth patient dosed at 62.5 µg QD was censored from the analysis due abnormal values observed at all timepoints IKZF 1/3, Ikaros zinc finger protein 1/3; MWF, Monday Wednesday Friday; PBMCs, peripheral blood mononuclear cells

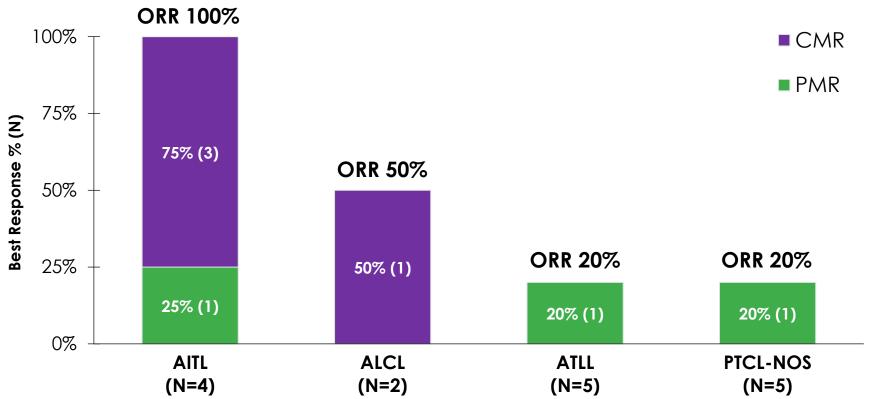
=
The 14-day periods of cemsidomide dosing

Best Response by NHL Subtype*

Response Rate of 38% Achieved in Heavily Pretreated NHL Patient Population

• Cemsidomide monotherapy produced 44% and 50% ORRs in PTCL as assessed by PET-CT and CT, respectively, and several deep responses were assessed as indicated by a 25% CR rate

PET-CT-based response assessments: CMR = Complete Metabolic Response, PMR = Partial Metabolic Response, SD = Stable Disease, PMD = Progressive Metabolic Disease. CT-based response assessments: CR = Complete Response, PR = Partial Response, SD = Stable Disease, PD = Progressive Disease.

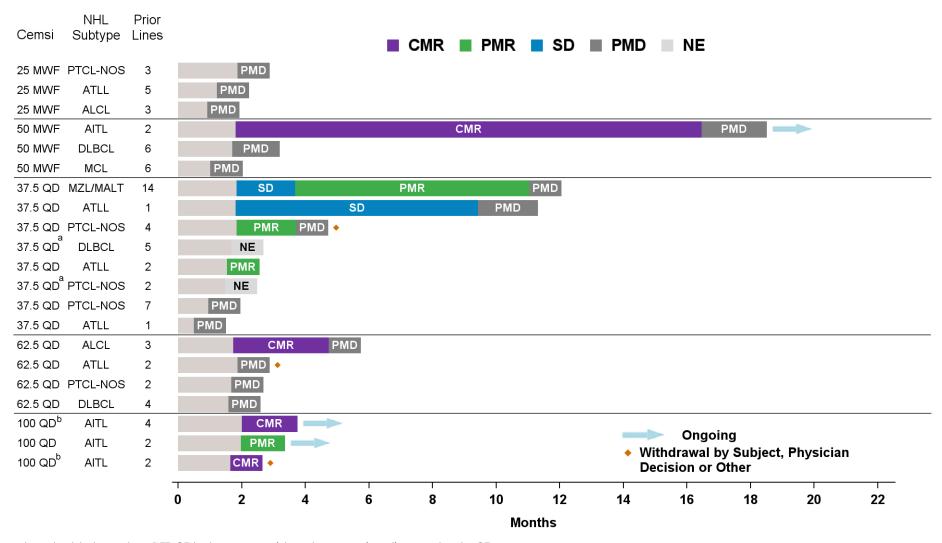

NHL, non-Hodgkin lymphoma; ORR, overall response rate; PTCL, peripheral T-cell lymphoma.

^{*} Investigator assessed response; 2 patients were evaluated based on CT scan and were PD but not evaluable based on PET-CT, both patients are included as PMD for PET-CT based assessment; 2 additional patients came off study prior to follow up scans and were not considered efficacy evaluable.

Best Response by PTCL Subtype*

Response Rate of 44% Achieved in Difficult-to-treat PTCL Patient Population

- Cemsidomide monotherapy produced responses in all four PTCL subtypes evaluated
- All AITL patients (4/4) experienced a metabolic response


AITL, angioimmunoblastic T-cell lymphoma; ALCL, anaplastic large cell lymphoma; ATLL, adult T-cell lymphoma; CMR, complete metabolic response; ORR, overall response rate; PMR, partial metabolic response; PTCL, peripheral T-cell lymphoma; PTCL-NOS, peripheral T-cell lymphoma not-otherwise specified.

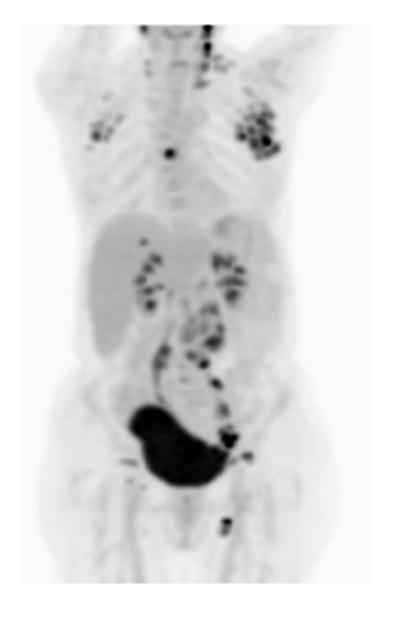
11

^{*} Investigator assessed response; 2 patients were evaluated based on CT scan and were PD but not evaluable based on PET-CT, both patients are included as PMD for PET-CT based assessment; 2 additional patients came off study prior to follow up scans and were not considered efficacy evaluable.

Swimmer Plot: Exposure Duration and Clinical Responses

Responses Were Observed Across a Broad Range of Doses

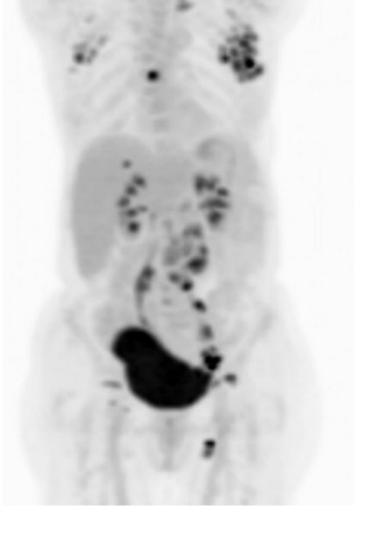
^a Both patients were not evaluable based on PET-CT but were considered progressive disease due to CT scan.


^b Both patients dose reduced to 62.5 ug following DLTs.

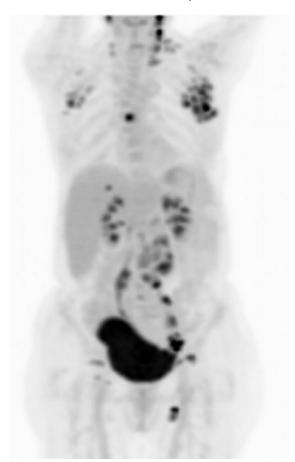
Patient Case Study - Background

- Age and Disease Type: 72 y/o woman with PTCL-TFH/AITL
- <u>Past Medical History</u>: gastroesophageal reflux disease, hypertension and irritable bowel syndrome
- Initial diagnosis: 2020
- Initial treatment: AZA-CHOP (on protocol) + HDT (BEAM) -ASCT 2020

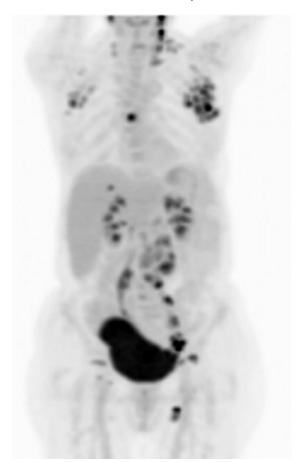
Patient Case Study – Background


- Age and Disease Type: 72 y/o woman with PTCL-TFH/AITL
- <u>Past Medical History</u>: gastroesophageal reflux disease, hypertension and irritable bowel syndrome
- Initial diagnosis: 2020
- <u>Initial treatment</u>: AZA-CHOP (on protocol) + HDT (BEAM) -ASCT 2020
- Relapse: ~30 months later, 2023, PET diffuse LAN

Patient Case Study – Background

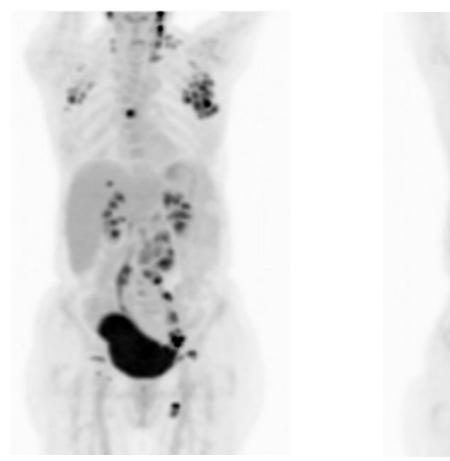

- Age and Disease Type: 72 y/o woman with PTCL-TFH/AITL
- <u>Past Medical History</u>: gastroesophageal reflux disease, hypertension and irritable bowel syndrome
- Initial diagnosis: 2020
- Initial treatment: AZA-CHOP (on protocol) + HDT (BEAM) -ASCT 2020
- Relapse: ~30 months later, 2023, PET diffuse LAN
- <u>Biopsy</u>: left inguinal lymph node
 - Abnormal T-cell Population: CD3, CD2, CD4, CD5, ICOS, PD1
 - Do not express: CD7 (lost), CD10, CD23, CD56, CXCL13
 - Pathological Finding: Increased disrupted FDC meshworks

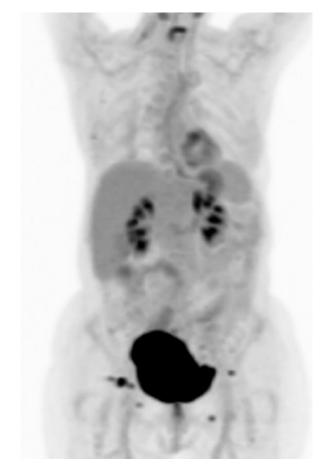
Somatic alterations detected in this sample:							
Gene/Chrom.	Туре	Alteration	Location	Additional Information			
Mutations							
TET2	Frameshift Deletion	H990Lfs*17 (c.2969del)	exon 3	M AF: 32.4%	0	α	
TET2	Splicing Mutation	X1319_splice (c.3955-2A>G)	exon 8	M AF: 40.6%	©	α	
TNFRSF14	Frameshift Deletion	W7G fs*14 (c.19_22del)	exon 1	M AF: 3.9%	©		
SOCS1	Frameshift Insertion	P83Afs*34 (c.246dupG)	exon 2	M AF: 2.6%	©		
IKZF3	Frameshift Deletion	E 171 Kfs*4 (c.507_508del)	exon 5	M AF: 15.7%			
SOCS1	Missense Mutation	S116R (c.348C>G)	exon 2	M AF: 2.0%		а	


ASCT, autologous stem cell transplant; FDC, follicular dendritic cell; GERD, gastro esophageal reflux disorder; HTN, hypertension; PET, positron emission tomography; PTCL-TFH/AITL, Peripheral; T-cell lymphoma – T-follicular Helper/Angioimmunoblastic T-cell lymphoma; PMHX, past medical history; y/o, year old

- Age and Disease Type: 72 y/o woman with PTCL-TFH/AITL now relapsed
- <u>Treatment History</u>: started oral cemsidomide 50 µg MWF 14 days on and 14 days off in 2023

Baseline

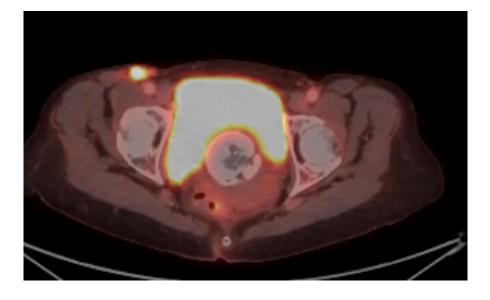

- Age and Disease Type: 72 y/o woman with PTCL-TFH/AITL now relapsed
- <u>Treatment History</u>: started oral cemsidomide 50 µg MWF 14 days on and 14 days off in 2023



Baseline

Post Cycle 2

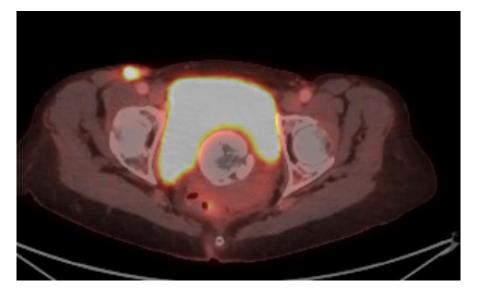
- Age and Disease Type: 72 y/o woman with PTCL-TFH/AITL now relapsed
- <u>Treatment History</u>: started oral cemsidomide 50 µg MWF 14 days on and 14 days off in 2023

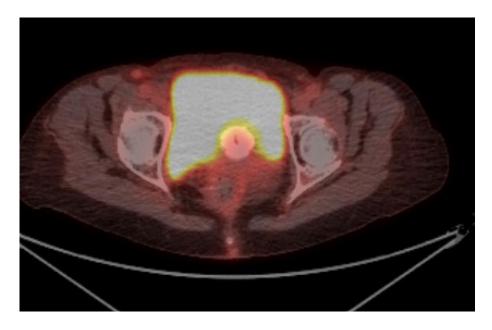


Baseline

Post Cycle 2

Post Cycle 16


- <u>Biopsy</u>: right inguinal lymph node
- <u>Diagnosis</u>: right inguinal lymph node:
 - Partial involvement by previously diagnosed peripheral T-cell lymphoma with T-follicular helper (TFH) phenotype
- The immunophenotype of the abnormal T-cell population is similar to previous and in keeping with T-follicular Helper origin
- Abnormal T-cell population represents 7.6% of white blood count

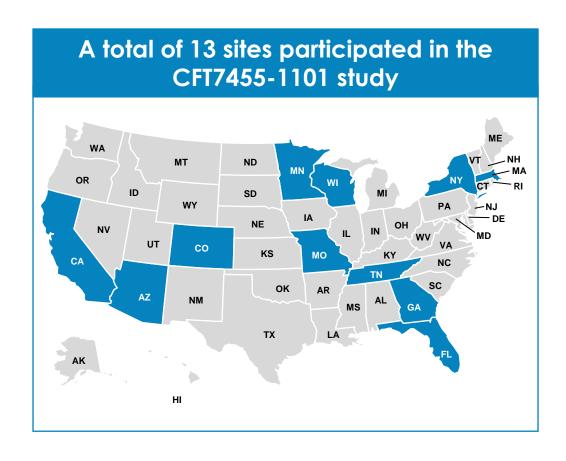

Post Cycle 16

19

- <u>Biopsy</u>: right inguinal lymph node
- <u>Diagnosis</u>: right inguinal lymph node:
 - Partial involvement by previously diagnosed peripheral T-cell lymphoma with T-follicular helper (TFH) phenotype
- The immunophenotype of the abnormal T-cell population is similar to previous and in keeping with T-follicular Helper origin
- Abnormal T-cell population represents 7.6% of white blood count

Post Cycle 16

Post Cycle 18


Conclusions

- Cemsidomide displays a differentiated PK profile with an approximately 2-day half life and induces rapid and potent degradation of IKZF1/3
- Cemsidomide was well tolerated with additional dose finding ongoing
 - 2 DLTs were observed at 100 μg (grade 4 thrombocytopenia) with enrollment currently ongoing at 75 μg
 - Per BLRM, maximum tolerated dose not yet exceeded
 - Grade 3/4 neutropenia cases were manageable with no cases resulting in discontinuation
- Cemsidomide as a single agent demonstrated compelling anti-lymphoma activity across a broad range
 of doses in the subset of patients enrolled with PTCL
 - Responses were observed at multiple dose levels tested, suggesting a wide therapeutic index
 - 44% ORR and 25% CR rates were observed in PTCL
- Cemsidomide is well suited for further development in earlier lines of treatment and in combination with other NHL agents

BLRM, Bayesian logistic regression model; CR, complete response; DLTs, dose limiting toxicities; IKZF 1/3, Ikaros zinc finger protein 1/3; NHL, non-Hodgkin lymphoma; ORR, overall response rate; PK, pharmacokinetics; PTCL, peripheral T-cell lymphoma

Acknowledgements

- We would like to thank all the patients who are participating in the CFT-7455-1101 study, as well as all the investigators and research staff for their contribution to the study
- This study is sponsored by C4 Therapeutics, Inc.
- All authors contributed to and approved the presentation

Content of this presentation is copyright and responsibility of ASH. Permission is required for re-use